Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.043
Filter
1.
Article in Chinese | MEDLINE | ID: mdl-38664033

ABSTRACT

Objective: To explore the effect of salvia miltiorrhiza combined with roxadustat on wound healing of full-thickness skin defects in diabetic rats and its mechanism. Methods: This study was an experimental study. Twenty male 8-week-old Sprague-Dawley rats were used to successfully establish diabetic model, then full-thickness skin defect wounds on their backs were made. The rats were divided into normal saline group, roxadustat alone group, salvia miltiorrhiza alone group, and roxadustat+salvia miltiorrhiza group according to the random number table, with 5 rats in each group. Immediately after injury, the rats in normal saline group were given 5 mL normal saline by gavage, the rats in roxadustat alone group were given 1.5 mg/mL roxadustat suspension by gavage at 25 mg/kg, the rats in salvia miltiorrhiza alone group were given 18 mg/mL salvia miltiorrhiza suspension by gavage at 300 mg/kg, and the rats in roxadustat+salvia miltiorrhiza group were given 19.5 mg/mL roxadustat and salvia miltiorrhiza suspension at roxadustat 25 mg/kg and salvia miltiorrhiza 300 mg/kg. All were administered once a day for 2 weeks. The wounds at 0 (immediately), 4, 8, and 12 d after injury were observed, and the wound healing rates at 4, 8, and 12 d after injury were calculated (n=5). At 14 d after injury, abdominal aortic blood was collected, and hemoglobin, red cell count, and white blood cell count were detected (n=5). The wound tissue was collected for hematoxylin-eosin staining to observe inflammatory infiltration, skin tissue structure, and neovascularization, for Masson staining to observe the proportion of collagen fiber (n=3), for Western blotting to detect the protein expression levels of vascular endothelial growth factor (VEGF), CD31, interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1ß (n=3), and for immunohistochemical staining to determine the protein expression levels of epidermal growth factor receptor (EGFR), hypoxia-inducible factor 1α (HIF-1α), and proliferating cell nuclear antigen (PCNA), with sample number of 3. Results: From 0 to 12 d after injury, the wound areas of rats in 4 groups were gradually decreased. At 4 d after injury, the wound healing rates of rats in salvia miltiorrhiza alone group and roxadustat+salvia miltiorrhiza group were significantly higher than those in normal saline group and roxadustat alone group (P<0.05). At 8 d after injury, the wound healing rates of rats in roxadustat alone group and salvia miltiorrhiza alone group were significantly higher than the rate in normal saline group (P<0.05), and the wound healing rate of rats in roxadustat+salvia miltiorrhiza group was significantly higher than the rates in the other 3 groups (with P values all <0.05). At 12 d after injury, the wound healing rates of rats in roxadustat alone group, salvia miltiorrhiza alone group, and roxadustat+salvia miltiorrhiza group were significantly higher than the rate in normal saline group (P<0.05). At 14 d after injury, there were no statistically significant differences in the hemoglobin or red blood cell count of rats in 4 groups (P<0.05). The white blood cell count of rats in roxadustat alone group, salvia miltiorrhiza alone group, and roxadustat+salvia miltiorrhiza group were respectively (24.3±1.2)×109/L, (26.3±2.4)×109/L, and (15.0±0.7)×109/L, which were significantly lower than (33.8±2.7)×109/L in normal saline group (P<0.05); the white blood cell count of rats in roxadustat+salvia miltiorrhiza group was significantly lower than that in roxadustat alone group and salvia miltiorrhiza alone group (with P values both <0.05). At 14 d after injury, a large number of inflammatory cell infiltration, disordered skin tissue structure, and few new blood vessels were observed in the wounds of rats in normal saline group; while a small amount of inflammatory cell infiltration, tight skin tissue structure, and rich neovascularization were observed in the wounds of rats in the other 3 groups. There were no statistically significant differences in the proportion of collagen fiber of wounds in rats among the 4 groups (P>0.05). At 14 d after injury, the protein expression levels of VEGF and CD31 in the wound tissue of rats in roxadustat alone group, salvia miltiorrhiza alone group, and roxadustat+salvia miltiorrhiza group were significantly higher than those in normal saline group (P<0.05), the protein expression level of CD31 in the wound tissue of rats in roxadustat+salvia miltiorrhiza group was significantly higher than the levels in roxadustat alone group and salvia miltiorrhiza alone group (with P values both <0.05). At 14 d after injury, the protein expression levels of IL-6, TNF-α, and IL-1ß in the wound tissue of rats in roxadustat alone group, salvia miltiorrhiza alone group, and roxadustat+salvia miltiorrhiza group were significantly lower than those in normal saline group (P<0.05); the protein expression levels of IL-6 and IL-1ß in the wound tissue of rats in roxadustat+salvia miltiorrhiza group were significantly lower than those in roxadustat alone group and salvia miltiorrhiza alone group (P<0.05); the protein expression level of TNF-α in the wound tissue of rats in roxadustat+salvia miltiorrhiza group was significantly lower than that in salvia miltiorrhiza alone group (P<0.05). At 14 d after injury, the protein expression level of EGFR in the wound tissue of rats in roxadustat+salvia miltiorrhiza group was significantly higher than the levels in the other 3 groups (with P values all <0.05); the protein expression levels of HIF-1α in the wound tissue of rats in roxadustat alone group and roxadustat+salvia miltiorrhiza group were significantly higher than the level in normal saline group (P<0.05), and the protein expression level of HIF-1α in the wound tissue of rats in roxadustat+salvia miltiorrhiza group was significantly higher than that in salvia miltiorrhiza alone group (P<0.05); there were no statistically significant differences in the protein expression level of PCNA in the wound tissue of rats in 4 groups (P>0.05). Conclusions: Roxadustat combined with salvia miltiorrhiza can promote the wound healing of full-thickness skin defects in diabetic rats by promoting blood vessel regeneration and reducing inflammatory response.


Subject(s)
Diabetes Mellitus, Experimental , Rats, Sprague-Dawley , Salvia miltiorrhiza , Wound Healing , Animals , Wound Healing/drug effects , Male , Rats , Salvia miltiorrhiza/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/injuries , Vascular Endothelial Growth Factor A/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Interleukin-6/blood , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood
2.
Sci Rep ; 14(1): 9483, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664520

ABSTRACT

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Subject(s)
Alkaloids , Benzodioxoles , HSP90 Heat-Shock Proteins , Hyperglycemia , Molecular Docking Simulation , Piperidines , Poly (ADP-Ribose) Polymerase-1 , Polylactic Acid-Polyglycolic Acid Copolymer , Polyunsaturated Alkamides , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Piperidines/pharmacology , Piperidines/chemistry , Benzodioxoles/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Alloxan , Rats , Humans , Male , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , DNA Damage/drug effects
3.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664681

ABSTRACT

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Cell Movement , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Vascular Remodeling , STAT3 Transcription Factor/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Animals , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/genetics , Male , Cells, Cultured , Mice, Knockout , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Humans , Mice, Inbred C57BL , Glycation End Products, Advanced/metabolism
4.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Sterol Esterase/metabolism , Sterol Esterase/genetics , Mice, Knockout , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Signal Transduction , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Nitric Oxide/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Ubiquitination
5.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637413

ABSTRACT

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Subject(s)
Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Animals , Rats , Axons/metabolism , Axons/pathology , Diabetes Mellitus, Experimental/metabolism , Nerve Growth Factor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Taurine/pharmacology , Taurine/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
6.
Physiol Rep ; 12(8): e16009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639646

ABSTRACT

Evidence suggests that insulin resistance plays an important role in developing diabetes complications. The association between insulin resistance and pain perception is less well understood. This study aimed to investigate the effects of peripheral insulin deficiency on pain pathways in the brain. Diabetes was induced in 60 male rats with streptozotocin (STZ). Insulin was injected into the left ventricle of the brain by intracerebroventricular (ICV) injection, then pain was induced by subcutaneous injection of 2.5% formalin. Samples were collected at 4 weeks after STZ injection. Dopamine (DA), serotonin, reactive oxygen species (ROS), and mitochondrial glutathione (mGSH) were measured by ELISA, and gene factors were assessed by RT-qPCR. In diabetic rats, the levels of DA, serotonin, and mGSH decreased in the nuclei of the thalamus, raphe magnus, and periaqueductal gray, and the levels of ROS increased. In addition, the levels of expression of the neuron-specific enolase and receptor for advanced glycation end genes increased, but the expression of glial fibrillary acidic protein expression was reduced. These results support the findings that insulin has an analgesic effect in non-diabetic rats, as demonstrated by the formalin test. ICV injection of insulin reduces pain sensation, but this was not observed in diabetic rats, which may be due to cell damage ameliorated by insulin.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Rats , Male , Animals , Insulin/pharmacology , Streptozocin , Diabetes Mellitus, Experimental/metabolism , Reactive Oxygen Species/metabolism , Serotonin , Pain/drug therapy , Analgesics/adverse effects
7.
Sci Rep ; 14(1): 9410, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658742

ABSTRACT

Diabetes mellitus (DM) is a persistent, progressive, and multifaceted disease characterized by elevated blood glucose levels. Type 2 diabetes mellitus is associated with a relative deficit in insulin mainly due to beta cell dysfunction and peripheral insulin resistance. Metformin has been widely prescribed as a primary treatment option to address this condition. On the other hand, an emerging glucose-reducing agent known as imeglimin has garnered attention due to its similarity to metformin in terms of chemical structure. In this study, an innovative series of imeglimin derivatives, labeled 3(a-j), were synthesized through a one-step reaction involving an aldehyde and metformin. The chemical structures of these derivatives were thoroughly characterized using ESI-MS, 1H, and 13C NMR spectroscopy. In vivo tests on a zebrafish diabetic model were used to evaluate the efficacy of the synthesized compounds. All compounds 3(a-j) showed significant antidiabetic effects. It is worth mentioning that compounds 3b (FBS = 72.3 ± 7.2 mg/dL) and 3g (FBS = 72.7 ± 4.3 mg/dL) have antidiabetic effects comparable to those of the standard drugs metformin (FBS = 74.0 ± 5.1 mg/dL) and imeglimin (82.3 ± 5.2 mg/dL). In addition, a docking study was performed to predict the possible interactions between the synthesized compounds and both SIRT1 and GSK-3ß targets. The docking results were in good agreement with the experimental assay results.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Molecular Docking Simulation , Triazines , Zebrafish , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Metformin/pharmacology , Metformin/chemistry , Metformin/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/metabolism , Disease Models, Animal
8.
Part Fibre Toxicol ; 21(1): 21, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658944

ABSTRACT

BACKGROUND: Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS: Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS: Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Insulin Resistance , Nanoparticles , Polystyrenes , Proto-Oncogene Proteins c-akt , Animals , Diabetes Mellitus, Type 2/chemically induced , Blood Glucose/drug effects , Blood Glucose/metabolism , Male , Polystyrenes/toxicity , Polystyrenes/chemistry , Nanoparticles/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Experimental/chemically induced , Mice , Forkhead Box Protein O1/metabolism , Microplastics/toxicity , Phosphorylation , Mice, Inbred C57BL , Liver/drug effects , Liver/metabolism , Liver/pathology
9.
Front Endocrinol (Lausanne) ; 15: 1369369, 2024.
Article in English | MEDLINE | ID: mdl-38660518

ABSTRACT

Aims: To determine the roles of matrix metallopeptidase-9 (MMP9) on human coronary artery smooth muscle cells (HCASMCs) in vitro, early beginning of atherosclerosis in vivo in diabetic mice, and drug naïve patients with diabetes. Methods: Active human MMP9 (act-hMMP9) was added to HCASMCs and the expressions of MCP-1, ICAM-1, and VCAM-1 were measured. Act-hMMP9 (n=16) or placebo (n=15) was administered to diabetic KK.Cg-Ay/J (KK) mice. Carotid artery inflammation and atherosclerosis measurements were made at 2 and 10 weeks after treatment. An observational study of newly diagnosed drug naïve patients with type 2 diabetes mellitus (T2DM n=234) and healthy matched controls (n=41) was performed and patients had ultrasound of carotid arteries and some had coronary computed tomography angiogram for the assessment of atherosclerosis. Serum MMP9 was measured and its correlation with carotid artery or coronary artery plaques was determined. Results: In vitro, act-hMMP9 increased gene and protein expressions of MCP-1, ICAM-1, VCAM-1, and enhanced macrophage adhesion. Exogenous act-hMMP9 increased inflammation and initiated atherosclerosis in KK mice at 2 and 10 weeks: increased vessel wall thickness, lipid accumulation, and Galectin-3+ macrophage infiltration into the carotid arteries. In newly diagnosed T2DM patients, serum MMP9 correlated with carotid artery plaque size with a possible threshold cutoff point. In addition, serum MMP9 correlated with number of mixed plaques and grade of lumen stenosis in coronary arteries of patients with drug naïve T2DM. Conclusion: MMP9 may contribute to the initiation of atherosclerosis and may be a potential biomarker for the early identification of atherosclerosis in patients with diabetes. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04424706.


Subject(s)
Atherosclerosis , Biomarkers , Diabetes Mellitus, Type 2 , Matrix Metalloproteinase 9 , Plaque, Atherosclerotic , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Animals , Biomarkers/metabolism , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/diagnostic imaging , Male , Female , Middle Aged , Atherosclerosis/metabolism , Atherosclerosis/pathology , Aged , Early Diagnosis , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Experimental , Coronary Artery Disease/diagnosis , Coronary Artery Disease/metabolism , Coronary Vessels/pathology , Coronary Vessels/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1369-1377, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621985

ABSTRACT

A total of 11 active ingredients including psoralen, isopsoralen, bakuchiol, bavachalcone, bavachinin, corylin, coryfolin, isobavachalcone, neobavaisoflavone, bakuchalcone, and corylifol A from Psoraleae Fructus in the plasma samples of diabetic and normal rats were simultaneously determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated to elucidate the pharmacokinetic profiles of coumarins, flavonoids, and monoterpene phenols in normal and diabetic rats. The rat model of type 2 diabetes mellitus(T2DM) was induced by a high-sugar and high-fat diet combined with injection of 1% streptozotocin every two days. The plasma samples were collected at different time points after the rats were administrated with Psoraleae Fructus. The proteins in the plasma samples were precipitated by ethyl acetate, and the plasma concentrations of the 11 components of Psoraleae Fructus were determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated by DAS 3.0. The results showed that the pharmacokinetic beha-viors of 8 components including psoralen, isopsoralen, bakuchiol, and bavachinin from Psoraleae Fructus in both female and male mo-del rats were significantly different from those in normal rats. Among them, the coumarins including psoralen, isopsoralen, and corylin showed lowered levels in the blood of both female and male model rats. The flavonoids(bavachinin, corylifol A, and bakuchalcone) and the monoterpene phenol bakuchiol showed decreased levels in the female model rats but elevated levels in the male model rats. It is suggested that the dosage of Psoraleae Fructus should be reasonably adjusted for the patients of different genders at the time of clinical administration.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Furocoumarins , Phenols , Psoralea , Humans , Rats , Female , Male , Animals , Drugs, Chinese Herbal/pharmacokinetics , Tandem Mass Spectrometry/methods , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/pharmacology , Ficusin , Coumarins , Monoterpenes
11.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621986

ABSTRACT

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Subject(s)
Caffeic Acids , Coumaric Acids , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Oleanolic Acid , Rats , Animals , Rats, Sprague-Dawley , Quercetin , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/pharmacokinetics
12.
Biochem Biophys Res Commun ; 710: 149843, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593617

ABSTRACT

The success rate of flap tissue reconstruction has increased in recent years owing to advancements in microsurgical techniques. However, complications, such as necrosis, are still more prevalent in diabetic patients compared to non-diabetic individuals, presenting an ongoing challenge. To address this issue, many previous studies have examined vascular anastomoses dilation and stability, primarily concerning surgical techniques or drugs. In contrast, in the present study, we focused on microvascular damage of the peripheral microvessels in patients with diabetes mellitus and the preventative impact of nafamostat mesylate. Herein, we aimed to investigate the effects of hyperglycemia on glycocalyx (GCX) levels in mice with type 2 diabetes. We examined the endothelial GCX (eGCX) in skin flap tissue of 9-12-week-old type 2 diabetic mice (db/db mice) using a perforator skin flap and explored treatment with nafamostat mesylate. The growth rates were compared after 1 week. Heterotype (db/+) mice were used as the control group. Morphological examination of postoperative tissues was performed at 1, 3, 5, and 7 days post-surgery. In addition, db/db mice were treated with 30 mg/kg/day of nafamostat mesylate daily and were evaluated on postoperative day 7. Seven days after surgery, all db/db mice showed significant partial flap necrosis. Temporal observation of the skin flaps revealed a stasis-like discoloration and necrosis starting from the contralateral side of the remaining perforating branch. The control group did not exhibit flap necrosis, and the flap remained intact. In the quantitative assessment of endothelial glycans using lectins, intensity scoring showed that the eGCX in the db/db group was significantly thinner than that in the db/+ group. These results were consistent with the scanning electron microscopy findings. In contrast, treatment with nafamostat mesylate significantly improved the flap engraftment rate and suppressed eGCX injury. In conclusion, treatment with nafamostat mesylate improves the disrupted eGCX structure of skin flap tissue in db/db mice, potentially ameliorating the impaired capillary-to-venous return in the skin flap tissue.


Subject(s)
Benzamidines , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Guanidines , Vascular Diseases , Humans , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Glycocalyx , Disease Models, Animal , Mice, Inbred Strains , Necrosis/drug therapy
13.
J Mol Neurosci ; 74(2): 36, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568285

ABSTRACT

After ischemic stroke, microRNAs (miRNAs) participate in various processes, including immune responses, inflammation, and angiogenesis. Diabetes is a key factor increasing the risk of ischemic stroke; however, the regulatory pattern of miRNAs at different stages of diabetic stroke remains unclear. This study comprehensively analyzed the miRNA expression profiles in diabetic mice at 1, 3, and 7 days post-reperfusion following the middle cerebral artery occlusion (MCAO). We identified differentially expressed (DE) miRNAs in diabetic stroke and found significant dysregulation of some novel miRNAs (novel_mir310, novel_mir89, and novel_mir396) post-stroke. These DEmiRNAs were involved in apoptosis and the formation of tight junctions. Finally, we identified three groups of time-dependent DE miRNAs (miR-6240, miR-135b-3p, and miR-672-5p). These have the potential to serve as biomarkers of diabetic stroke. These findings provide a new perspective for future research, emphasizing the dynamic changes in miRNA expression after diabetic stroke and offering potential candidates as biomarkers for future clinical applications.


Subject(s)
Diabetes Mellitus, Experimental , Ischemic Stroke , MicroRNAs , Stroke , Animals , Mice , Diabetes Mellitus, Experimental/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plants, Genetically Modified , Stroke/genetics , Biomarkers
14.
Nat Commun ; 15(1): 2859, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570500

ABSTRACT

Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.


Subject(s)
Diabetes Mellitus, Experimental , Forkhead Transcription Factors , Mice , Humans , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Active Transport, Cell Nucleus , Zebrafish/metabolism , Karyopherins/metabolism
15.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658093

ABSTRACT

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Flavonoids , HMGB1 Protein , Rats, Sprague-Dawley , Receptors, Cannabinoid , Receptors, G-Protein-Coupled , Signal Transduction , Sirtuin 1 , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Flavonoids/pharmacology , Signal Transduction/drug effects , Rats , Male , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cytokines/metabolism , Epimedium/chemistry
16.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659015

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Myocardium , Umbilical Cord , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Cardiomyopathies/therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Humans , Male , Fibrosis/therapy , Mice , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL
17.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563351

ABSTRACT

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Subject(s)
Sulfhydryl Compounds , Thioctic Acid , Thioctic Acid/chemistry , Animals , Sulfhydryl Compounds/chemistry , Administration, Oral , Rats , Humans , Nanoparticles/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Drug Delivery Systems , Male , Inflammation/drug therapy , Mice , Surface Properties , Drug Carriers/chemistry , Insulin/metabolism , Rats, Sprague-Dawley , Particle Size , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells
18.
Sci Prog ; 107(2): 368504241239444, 2024.
Article in English | MEDLINE | ID: mdl-38614462

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge for physicians, necessitating the management of cell damage and the preservation of organ functions. Various surgical procedures, such as vascular surgery on extremities, temporary cross-clamping of the abdominal aorta in aortic surgery, and the use of a tourniquet in extremity surgeries, may induce lower limb IRI. The susceptibility to IRI is heightened in individuals with diabetes. This study aimed to investigate the effects of fullerenol C60 and sevoflurane on mouse muscle tissue in a lower limb IRI model and to assess their potential in preventing complications arising from ischemia-reperfusion in mice with streptozocin-induced diabetes. METHODS: A total of 36 adult Swiss albino mice were randomly divided into six groups, each consisting of six mice: control group (group C), diabetes group (group D), diabetes-ischemia/reperfusion group (group DIR), diabetes-ischemia/reperfusion-fullerenol C60 group (group DIR-FC60), diabetes-ischemia/reperfusion-sevoflurane group (group DIR-S), and diabetes-ischemia/reperfusion-sevoflurane-fullerenol C60 group (DIR-S-FC60). Streptozocin (55 mg/kg) was intraperitoneally administered to induce diabetes in the relevant groups, with mice displaying blood glucose levels of 250 mg/dL or higher at 72 h were considered diabetic. After 4 weeks, all groups underwent laparotomy under anesthesia. In DIR-FC60 and DIR-S-FC60 groups, fullerenol C60 (100 mg/kg) was intraperitoneally administrated 30 min before the ischemia period. Sevoflurane, delivered in 100% oxygen at a rate of 2.3% and 4 L/min, was administered during the ischemia period in DIR-S and DIR-S-FC60 groups. In the IR groups, a microvascular clamp was placed on the infrarenal abdominal aorta for 120 min during the ischemia period, followed by the removal of the clamp and a 120-min reperfusion period. At the end of the reperfusion, gastrocnemius muscle tissues were removed for histopathological and biochemical parameter examinations. RESULTS: Histopathological examination revealed a significant reduction in the disorganization and degeneration of muscle cells in the DIR-S-FC60 group compared to the DIR group (p = 0.041). Inflammatory cell infiltration was notably lower in the DIR-S, DIR-FC60, and DIR-S-FC60 groups than in the DIR group (p = 0.031, p = 0.011, and p = 0.013, respectively). The total damage scores in the DIR-FC60 and DIR-S-FC60 groups were significantly lower than in the DIR group (p = 0.018 and p = 0.008, respectively). Furthermore, the levels of malondialdehyde (MDA) in the DIR-S, DIR-FC60, and DIR-S-FC60 groups were significantly lower than in the DIR group (p < 0.001, p < 0.001, and p < 0.001, respectively). Catalase (CAT) enzyme activity in the DIR-S, DIR-FC60, and DIR-S-FC60 groups was higher than in the DIR group (p = 0.001, p = 0.014, and p < 0.001, respectively). Superoxide dismutase (SOD) enzyme activity in the DIR-FC60 and DIR-S-FC60 groups was also higher than in the DIR group (p < 0.001 and p = 0.001, respectively). CONCLUSION: Our findings indicate that administering fullerenol C60 30 min prior to ischemia in diabetic mice, in combination with sevoflurane, led to a reduction in oxidative stress and the correction of IR-related damage in muscle tissue histopathology. We believe that the administration of fullerenol C60 before IR, coupled with sevoflurane administration during IR, exerts a protective effect in mice.


Subject(s)
Diabetes Mellitus, Experimental , Fullerenes , Reperfusion Injury , Animals , Mice , Sevoflurane , Streptozocin , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Ischemia , Reperfusion Injury/drug therapy , Lower Extremity
19.
PLoS One ; 19(4): e0301454, 2024.
Article in English | MEDLINE | ID: mdl-38603728

ABSTRACT

Testicular dysfunction is a prevalent health problem frequently reported in individuals with diabetes mellitus (DM). Oxidative-inflammatory reactions, hormonal and spermatic abnormalities often accompany this illness. Herbal remedies "particularly wild plants" including chicory (Chicorium Intybus) and purslane (Portulaca Oleracea) are emerging as popular agents for people dealing with these issues due to their ability to act as antioxidants, reduce inflammation, and exhibit antidiabetic effects. According to the collected data, the daily administration of chicory (Ch) seed-extract (250 mg/kg) or purslane (Pu) seed-extract (200 mg/kg) to streptozotocin (STZ)-induced diabetic rats (50 mg/kg) for 30 days resulted in the normalization of fasting blood glucose (FBG), serum fructosamine, insulin levels, and insulin resistance (HOMA-IR), as well as reducing lipid peroxidation end-product malondialdehyde (MDA) level, aldehyde oxidase (AO) and xanthene oxidase (XO) activities. While caused a considerable improvement in glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT) activity, and total antioxidant capacity (TAC) when compared to diabetic rats. Ch and Pu extracts had a substantial impact on testicular parameters including sperm characterization, testosterone level, vimentin expression along with improvements in body and testis weight. They also mitigated hyperlipidemia by reducing total lipids (TL), total cholesterol (TC) levels, and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, oral administration of either Ch or Pu notably attuned the elevated proinflammatory cytokines as tumor necrotic factor (TNF-α), C-reactive protein (CRP), and Interleukin-6 (IL-6) together with reducing apoptosis and DNA damage. This was achieved through the suppression of DNA-fragmentation marker 8OHdG, triggering of caspase-3 immuno-expression, and elevation of Bcl-2 protein. The histological studies provided evidence supporting the preventive effects of Ch and Pu against DM-induced testicular dysfunction. In conclusion, Ch and Pu seed-extracts mitigate testicular impairment during DM due to their antihyperglycemic, antilipidemic, antioxidant, anti-inflammatory, and antiapoptotic properties.


Subject(s)
Chicory , Diabetes Mellitus, Experimental , Insulin Resistance , Portulaca , Testicular Diseases , Humans , Rats , Male , Animals , Portulaca/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Diabetes Mellitus, Experimental/metabolism , Plants, Edible/metabolism , Blood Glucose/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oxidative Stress , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammation , Testicular Diseases/drug therapy , Glutathione/metabolism , Cholesterol/pharmacology
20.
Front Immunol ; 15: 1389134, 2024.
Article in English | MEDLINE | ID: mdl-38605972

ABSTRACT

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Islets of Langerhans Transplantation/methods , Artificial Intelligence , Diabetes Mellitus, Experimental/therapy , Mesenchymal Stem Cell Transplantation/methods , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL
...